Mastering in Data Science and Machine Learning Industrial Training and Online Classes by Deepak Smart Programming
Introduction
Course Syllabus
who can opt ?
Candidates from various quantitative backgrounds, like Engineering, Finance, Math, Statistics, Economics, Business Management and have some knowledge on the data analysis, understanding on business problems etc.
Enroll Yourself and be a Smart Programmer
HURRY UP...!!!

    • 1. Introduction
    • ⇒ What Data Science?

    • ⇒ Common Terms in Analytics

    • ⇒ Analytics vs. Data warehousing, OLAP, MIS Reporting

    • ⇒ Relevance in industry and need of the hour

    • ⇒ Types of problems and business objectives in various industries

    • ⇒ How leading companies are harnessing the power of analytics?

    • ⇒ Critical success drivers

    • ⇒ Overview of analytics tools & their popularity

    • ⇒ Analytics Methodology & problem solving framework

    • ⇒ List of steps in Analytics projects

    • ⇒ Identify the most appropriate solution design for the given problem statement

    • ⇒ Project plan for Analytics project & key milestones based on effort estimates

    • ⇒ Build Resource plan for analytics project

    • ⇒ Why Python for data science?

    • 2. Core Python
    • ⇒ Overview of Python- Starting with Python

    • ⇒ Introduction to installation of Python

    • ⇒ Introduction to Python Editors & IDE's(Canopy, pycharm, Jupyter, Rodeo, Ipython etc…)

    • ⇒ Python Syntax

    • ⇒ Variables & Data Types

    • ⇒ Operators

    • ⇒ Conditional Statements

    • ⇒ Working With Numbers & Strings

    • ⇒ Collections API

    • ⇒ LISTS

    • ⇒ TUPLES

    • ⇒ DICTIONARY

    • ⇒ Date and Time

    • ⇒ Function & Modules

    • ⇒ File handling

    • ⇒ Exception Handling

    • ⇒ OOPS Concepts in python

    • ⇒ Regular Expression

    • 3. Python Libraries for Data Science
    • ⇒ Numpy

    • ⇒ Scify

    • ⇒ Pandas

    • ⇒ scikitlearn

    • ⇒ statmodels

    • ⇒ nltk

    • 4. Python Modules for Access, Import/Export Data
    • ⇒ Importing Data from various sources (Csv, txt, excel, access etc.)

    • ⇒ Database Input (Connecting to database)

    • ⇒ Viewing Data objects - subsetting, methods

    • ⇒ Exporting Data to various formats

    • ⇒ Important python modules: Pandas, beautiful soup

    • 5. Data Manipulation, Cleansing and Munging
    • ⇒ Cleansing Data with Python

    • ⇒ Data Manipulation steps (Sorting, filtering, duplicates, merging, appending, subsetting, derived variables, sampling, Data type conversions, renaming, formatting etc.)

    • ⇒ Data manipulation tools (Operators, Functions, Packages, control structures, Loops, arrays etc.)

    • ⇒ Python Built-in Functions (Text, numeric, date, utility functions)

    • ⇒ Python User Defined Functions

    • ⇒ Stripping out extraneous information

    • ⇒ Normalizing data

    • ⇒ Formatting data

    • ⇒ Important Python modules for data manipulation (Pandas, Numpy, re, math, string, datetime etc.)

    • 6. Data Analysis and Visualization
    • ⇒ Introduction exploratory data analysis

    • ⇒ Descriptive statistics, Frequency Tables and summarization

    • ⇒ Univariate Analysis (Distribution of data & Graphical Analysis)

    • ⇒ Bivariate Analysis(Cross Tabs, Distributions & Relationships, Graphical Analysis)

    • ⇒ Creating Graphs- Bar/pie/line chart/histogram/ boxplot/ scatter/ density etc.)

    • ⇒ Important Packages for Exploratory Analysis(NumPy Arrays, Matplotlib, seaborn, Pandas and scipy.stats etc.)

    • ⇒ Data visualization with tableau

    • 7. Statistics
    • ⇒ Basic Statistics - Measures of Central Tendencies and Variance

    • ⇒ Building blocks - Probability Distributions - Normal distribution - Central Limit Theorem

    • ⇒ Inferential Statistics -Sampling - Concept of Hypothesis Testing

    • ⇒ Statistical Methods - Z/t-tests( One sample, independent, paired), Anova, Correlations and Chi-square

    • ⇒ Important modules for statistical methods: Numpy, Scipy, Pandas

    • 8. Predictive Modeling
    • ⇒ Concept of model in analytics and how it is used?

    • ⇒ Common terminology used in analytics & modeling process

    • ⇒ Popular modeling algorithms

    • ⇒ Types of Business problems - Mapping of Techniques

    • ⇒ Different Phases of Predictive Modeling

    • 9. Data Exploration for Modeling
    • ⇒ Need for structured exploratory data

    • ⇒ EDA framework for exploring the data and identifying any problems with the data (Data Audit Report)

    • ⇒ Identify missing data

    • ⇒ Identify outliers data

    • ⇒ Visualize the data trends and patterns

    • 10. Data Preparation
    • ⇒ Need of Data preparation

    • ⇒ Consolidation/Aggregation - Outlier treatment - Flat Liners - Missing values- Dummy creation - Variable Reduction

    • ⇒ Variable Reduction Techniques - Factor & PCA Analysis

  • 11. Solving Segmentation Problems
  • ⇒ Introduction to Segmentation

  • ⇒ Types of Segmentation (Subjective Vs Objective, Heuristic Vs. Statistical)

  • ⇒ Heuristic Segmentation Techniques (Value Based, RFM Segmentation and Life Stage Segmentation)

  • ⇒ Behavioral Segmentation Techniques (K-Means Cluster Analysis)

  • ⇒ Cluster evaluation and profiling - Identify cluster characteristics

  • ⇒ Interpretation of results - Implementation on new data

  • 12. Linear Regression
  • ⇒ Introduction - Applications

  • ⇒ Assumptions of Linear Regression

  • ⇒ Building Linear Regression Model

  • ⇒ Understanding standard metrics (Variable significance, R-square/Adjusted R-square, Global hypothesis ,etc)

  • ⇒ Assess the overall effectiveness of the model

  • ⇒ Validation of Models (Re running Vs. Scoring)

  • ⇒ Standard Business Outputs (Decile Analysis, Error distribution (histogram), Model equation, drivers etc.)

  • ⇒ Interpretation of Results - Business Validation - Implementation on new data

  • 13. Logistic Regression
  • ⇒ Introduction - Applications

  • ⇒ Linear Regression Vs. Logistic Regression Vs. Generalized Linear Models

  • ⇒ Building Logistic Regression Model (Binary Logistic Model)

  • ⇒ Understanding standard model metrics (Concordance, Variable significance, Hosmer Lemeshov Test, Gini, KS, Misclassification, ROC Curve etc)

  • ⇒ Validation of Logistic Regression Models (Re running Vs. Scoring)

  • ⇒ Standard Business Outputs (Decile Analysis, ROC Curve, Probability Cut-offs, Lift charts, Model equation, Drivers or variable importance, etc)

  • ⇒ Interpretation of Results - Business Validation - Implementation on new data

    • 14. Time Series Forecasting
    • ⇒ Introduction - Applications

    • ⇒ Time Series Components( Trend, Seasonality, Cyclicity and Level) and Decomposition

    • ⇒ Classification of Techniques(Pattern based - Pattern less)

    • ⇒ Basic Techniques - Averages, Smoothening, etc

    • ⇒ Advanced Techniques - AR Models, ARIMA, etc

    • ⇒ Understanding Forecasting Accuracy - MAPE, MAD, MSE, etc

    • 15. Machine Learning
    • ⇒ Introduction to Machine Learning & Predictive Modeling

    • ⇒ Types of Business problems - Mapping of Techniques - Regression vs. classification vs. segmentation vs. Forecasting

    • ⇒ Major Classes of Learning Algorithms -Supervised vs Unsupervised Learning

    • ⇒ Different Phases of Predictive Modeling (Data Pre-processing, Sampling, Model Building, Validation)

    • ⇒ Overfitting (Bias-Variance Trade off) & Performance Metrics

    • ⇒ Feature engineering & dimension reduction

    • ⇒ Concept of optimization & cost function

    • ⇒ Overview of gradient descent algorithm

    • ⇒ Overview of Cross validation(Bootstrapping, K-Fold validation etc)

    • ⇒ Model performance metrics (R-square, Adjusted R-squre, RMSE, MAPE, AUC, ROC curve, recall, precision, sensitivity, specificity, confusion metrics )

    • 16. Unsupervised Learning: Segmentation
    • ⇒ What is segmentation & Role of ML in Segmentation?

    • ⇒ Concept of Distance and related math background

    • ⇒ K-Means Clustering

    • ⇒ Expectation Maximization

    • ⇒ Hierarchical Clustering

    • ⇒ Spectral Clustering (DBSCAN)

    • ⇒ Principle component Analysis (PCA)

    • 17. Decision Tree
    • ⇒ Decision Trees - Introduction - Applications

    • ⇒ Types of Decision Tree Algorithms

    • ⇒ Construction of Decision Trees through Simplified Examples; Choosing the "Best" attribute at each Non-Leaf node; Entropy; Information Gain, Gini Index, Chi Square, Regression Trees

    • ⇒ Generalizing Decision Trees; Information Content and Gain Ratio; Dealing with Numerical Variables; other Measures of Randomness

    • ⇒ Pruning a Decision Tree; Cost as a consideration; Unwrapping Trees as Rules

    • ⇒ Decision Trees - Validation

    • ⇒ Overfitting - Best Practices to avoid

    • 18. Ensemble Learning (Supervised)
    • ⇒ Concept of Ensembling

    • ⇒ Manual Ensembling Vs. Automated Ensembling

    • ⇒ Methods of Ensembling (Stacking, Mixture of Experts)

    • ⇒ Bagging (Logic, Practical Applications)

    • ⇒ Random forest (Logic, Practical Applications)

    • ⇒ Boosting (Logic, Practical Applications)

    • ⇒ Ada Boost

    • ⇒ Gradient Boosting Machines (GBM)

    • ⇒ XGBoost

    • 19. Artificial Neural Networks
    • ⇒ Motivation for Neural Networks and Its Applications

    • ⇒ Perceptron and Single Layer Neural Network, and Hand Calculations

    • ⇒ Learning In a Multi Layered Neural Net: Back Propagation and Conjugant Gradient Techniques

    • ⇒ Neural Networks for Regression

    • ⇒ Neural Networks for Classification

    • ⇒ Interpretation of Outputs and Fine tune the models with hyper parameters

    • ⇒ Validating ANN models

    • 20. Support Vector Machines
    • ⇒ Motivation for Support Vector Machine & Applications

    • ⇒ Support Vector Regression

    • ⇒ Support vector classifier (Linear & Non-Linear)

    • ⇒ Mathematical Intuition (Kernel Methods Revisited, Quadratic Optimization and Soft Constraints)

    • ⇒ Interpretation of Outputs and Fine tune the models with hyper parameters

    • ⇒ Validating SVM models

    • 21. K-Nearest Neighbors Algorithm (KNN)
    • ⇒ What is KNN & Applications?

    • ⇒ KNN for missing treatment

    • ⇒ KNN For solving regression problems

    • ⇒ KNN for solving classification problems

    • ⇒ Validating KNN model

    • ⇒ Model fine tuning with hyper parameters

    • 22. Naïve Bayes
    • ⇒ Concept of Conditional Probability

    • ⇒ Bayes Theorem and Its Applications

    • ⇒ Naïve Bayes for classification

    • ⇒ Applications of Naïve Bayes in Classifications

    • 23. Data Mining
    • ⇒ Taming big text, Unstructured vs. Semi-structured Data; Fundamentals of information retrieval, Properties of words; Creating Term-Document (TxD);Matrices; Similarity measures, Low-level processes (Sentence Splitting; Tokenization; Part-of-Speech Tagging; Stemming; Chunking)

    • ⇒ Finding patterns in text: text mining, text as a graph

    • ⇒ Natural Language processing (NLP)

    • ⇒ Text Analytics – Sentiment Analysis using Python

    • ⇒ Text Analytics – Word cloud analysis using Python

    • ⇒ Text Analytics - Segmentation using K-Means/Hierarchical Clustering

    • ⇒ Text Analytics - Classification (Spam/Not spam)

    • ⇒ Applications of Social Media Analytics

    • ⇒ Metrics(Measures Actions) in social media analytics

    • ⇒ Examples & Actionable Insights using Social Media Analytics

    • ⇒ Important python modules for Machine Learning (SciKit Learn, stats models, scipy, nltk etc)

    • ⇒ Fine tuning the models using Hyper parameters, grid search, piping etc

    • 24. Project work
    • ⇒ Applying different algorithms to solve the business problems and bench mark the results

  • Batches Details

    • Duration

      2-3 Months
    • Available Seats

      15
    • Online Training Schedule

      8.00 pm to 10.00 pm
    • Industrial Training Schedule in Chandigarh

      8.00 am to 7.00 pm
      (2 hours per batch)


    Register in Mastering in Machine Learning & Data Science Course

    If you want to take online/offline classes from us, please mail us directly